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Abstract
Symmetries play a crucial role in understanding phases of matter and the transitions between
them. Theoretical investigations of quantum models with SU(N) symmetry have provided
important insights into many-body phenomena. However, these models have generally remained
a theoretical idealization, since it is very difficult to exactly realize the SU(N) symmetry in
conventional quantum materials for large N. Intriguingly however, in recent years, ultracold
alkaline-earth-atom (AEA) quantum simulators have paved the path to realize SU(N)-symmetric
many-body models, where N is tunable and can be as large as 10. This symmetry emerges due
to the closed shell structure of AEAs, thereby leading to a perfect decoupling of the electronic
degrees of freedom from the nuclear spin. In this work, we provide a systematic review of recent
theoretical and experimental work on the many-body physics of these systems. We first discuss
the thermodynamic properties and collective modes of trapped Fermi gases, highlighting the
enhanced interaction effects that appear as N increases. We then discuss the properties of the
SU(N) Fermi–Hubbard model, focusing on some of the major experimental achievements in this
area. We conclude with a compendium highlighting some of the significant theoretical progress
on SU(N) lattice models and a discussion of some exciting directions for future research.

Keywords: SU(N) many-body models, quantum simulation, ultracold alkaline-earth atoms

1. Introduction

Rapid advances in the development of ultracold atomic sys-
tems have provided physicists with a powerful platform to
explore various facets of many-body physics [1]. In particular,

∗
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ultracold atoms loaded in optical lattices provide a versatile
platform for the quantum simulation of both equilibrium and
non-equilibrium physics [2, 3]. These systems provide unpre-
cedented control over the effective lattice geometries as well as
the strength and range of the inter-atomic interactions, thereby
providing a pathway to address unresolved questions about
emergent phenomena [4–7]. Furthermore, these systems can
be employed to synthesize new forms of quantum matter that
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go beyond the capabilities of conventional quantum materi-
als and can be harnessed for quantum information processing
tasks [8–10].

Most initial experimental efforts in this area focused on
trapping and cooling alkali atoms [11, 12]. These atoms have
only one valence electron thereby enabling the application
of several quantum control techniques. Furthermore, in cer-
tain atomic species such as 6Li or 40K, the scattering length
can be tuned by employing magnetic Feshbach resonances,
thereby providing a knob to control the strength of the inter-
actions [13]. However, the range of phenomena that can be
investigated using alkali atoms is somewhat limited due to
their atomic structure. A promising avenue to go beyond the
limitations of alkali gases has been provided by alkaline-earth-
like atoms (AEAs) [14]. AEAs are the elements that belong to
group II of the periodic table (Be, Mg, C, Sr Ba, and Ra), but
also the rare-earth element Yb. These elements are character-
ized by full inner shells and two outer valence electrons in a
filled s-shell. Due to their filled inner shells, the two valence
electrons govern most of these atoms’ chemical and electronic
properties. Most experiments with AEAs in have employed
173Yb (I= 5/2) and 87Sr (I= 9/2); for concreteness, we will
discuss the electronic structure of Yb in detail in the next sub-
section, but the ideas are applicable also for Sr.

1.1. Electronic structure of AEAs

The electronic configuration of 173Yb is [Xe]4f 146 s2. It has
filled f - and s-shells. Yb exhibits an electronic structure with
spin-singlet (S= 0) and spin-triplet (S= 1) manifolds. To a
first approximation, its level structure is well described in the
LS-coupling scheme, where coupling between the total orbital
angular momentum L and the total spin of the valence elec-
trons S gives the total electronic angular momentum J = L
+ S, and eigenstates are labeled as 2S+1LJ. Figure 1 displays
the level structure for 173Yb with the most significant optical
transitions. The ground state of 173Yb is a spin singlet 1S0 with
J= 0; it also exhibits two metastable states, the 3P0 state and
the 3P2 state. In particular, the 3P0 state has a lifetime τ ≈ 20
s, and also has no total electronic angular momentum (J= 0)
like the ground state 1S0. This has far-reaching implications on
the properties of the states, since in this case:

• The total angular momentum of the atom F is given only
by the nuclear spin I (F = I). The SU(N) symmetric nature
of interactions for the fermionic isotopes results from this
decoupling of the nuclear spin degree of freedom from the
electronic structure, as we will discuss in the following
section4.

• The state does not exhibit a hyperfine structure, since I · J=
0, and therefore is almost completely insensitive to mag-
netic fields because fermionic and bosonic isotopes have a

4 Yb has fermionic isotopes 171Yb and 173Yb, which possess a nuclear spin
I= 1/2 and I= 5/2, respectively; and bosonic isotopes 168Yb, 170Yb, 172Yb,
174Yb, and 176Yb, all which have I= 0.

weak or zero nuclear magnetic moment, respectively5. This
insensitivity has relevant consequences in how interactions
can be tuned for 173Yb atoms, since magnetic Feshbach
resonances, which are typically employed to control the
s-wave scattering length between two hyperfine states in
alkali-atoms [23], are experimentally unavailable due to
the requirement for extremely high magnetic fields that are
not achievable in laboratories. There are, however, optical
Feshbach resonances that can be used to tune interactions
between different mI states. These have been used by sev-
eral groups to realize Optical Stern Gerlach measurements
and/or break the SU(N) symmetric interactions [24–26].

1.2. SU(N)-symmetric interactions

Since J= 0, the ground state 1S0 and the metastable state
3P0 exhibit perfect decoupling of the nuclear spin from the
electronic structure due to the lack of hyperfine structure. In
these states, the spin is protected inside the nucleus and it is
not affected by the physics occurring at the electronic cloud
distance scales. This has an important effect on the proper-
ties of atomic collisions because, aside from Pauli exclusion,
nuclei can only affect collisions through hyperfine coupling
to the electron angular momentum6. In dilute atomic gases
at low-temperatures, scattering properties are well character-
ized by the s-wave scattering length. For fermionic gases with
N= 2I+ 1 spin components is possible to model the collisions
with the following pseudo-potential [28],

V(r) =
4π h̄2

m

N−2∑
Ft=0,2,...

aFtδ (r)PFt , (1)

where h̄ is the reduced Planck’s constant, m is the mass of the
colliding atoms, PFt is the projector on states with even total
spin Ft = 0,2,4, . . . ,N− 2 of the atom pair, and aFt is the scat-
tering length for a given Ft7.

For the two-body collision of atoms in states |F,m1⟩,
|F,m2⟩ and total spin |Ft,mt = m1 +m2⟩, the initial state
|F,m1⟩|F,m2⟩ will couple to a different spin combination
|F,m3⟩|F,m4⟩ via the pseudo-potential in equation (1),

⟨F,m4;F,m3|V(r) |F,m1;F,m2⟩

=
4π h̄2

m
δ (r)

N−2∑
Ft=0,2,...

Ft∑
mt=−Ft

aFtC
Ftmt
Fm1Fm2

CFtmt
Fm3Fm4

(2)

where CJMj1m1j2m2
are the Clebsh–Gordan coefficients and we

used that PFt =
∑Ft

mt=−Ft
|Ft,mt⟩⟨Ft,mt|. Equation (2) reflects

5 For fermions, the only magnetic moment arises from the nuclear spin, which
is essentially irrelevant since the nuclear magneton µN is approximately 2000
times smaller than the Bohr magneton µB of the electron.
6 Magnetic dipole-dipole interactions between the nuclear spin of two atoms
is negligible in comparison to the induced dipole-dipole interactions of the
electronic clouds [27].
7 Only states with even total spin Ft can contribute to the scattering process
because of the antisymmetrization of the wavefunction. In s-wave scattering
collisions the spatial wave function is symmetric, and therefore the spin wave
function has to be antisymmetric.
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Figure 1. Partial electronic structure of ytterbium. The states are labeled according to the Russell–Saunders (RS) notation when the f -shell
is closed and in terms of total angular momentum J when the f -shell is open. The wavelength λ and the linewidth Γ are specified for each
transition. References for the values of the linewidths:

∗
[15], † [16], ‡ [17], § [18], ¶ [19], ∥ [20, 21]. Reproduced with permission from [22].

that momentum conservation ensures that the total spin Ft
and its projection mt are conserved during the collision (mt =
m1 +m2 = m3 +m4), but the spin projection of the individual
atoms is not.

In the case of AEAs, the scattering lengths are equal for
all possible Ft pairs (aFt = a∀Ft), since the nuclear spin is
decoupled from the electronic structure, and therefore its influ-
ence in the scattering process is simply reduced to Pauli exclu-
sion principle. Because of the orthogonality relationships of
the Clebsch–Gordan coefficients

∑
J

∑
MC

JM
j1m2j2m2

CJMj1m1′ j2m2′
=

δm1,m1′ δm2,m2′ one observes that in contrast to the general case
of collisions, for AEAs the spin projection mF of each col-
liding atom is preserved and thus spin relaxation to other mF

states is forbidden. This means that the interaction will be
SU(N) symmetric, and the interaction pseudopotential sim-
plifies to V(r) = (4π h̄2/m)aδ(r) for all possible pairs of spin
projections. Gorshkov et al [27] provides theoretical estimates
for the SU(N) symmetry breaking of AEAs. The variation in
the scattering length for different nuclear spins in the ground
state 1S0 is of the order δagg/agg ∼ 10−9, while for the excited
metastable state 3P0 these are of order δaee/aee ∼ δa±eg/a

±
eg ∼

10−3 8 (here the perfect decoupling is slightly broken by the
admixture with higher-lying P states with J ̸= 0).

8 Scattering processes between two atoms in the ground state are denoted by
agg, two atoms in the excited state by aee, and one atom in the excited state and
the other one in the ground state in their triplet (+) or singlet (−) configuration
by a±eg .

1.3. Structure of the review

Now that we have introduced the electronic structure of
AEA gases and demonstrated that they exhibit an emer-
gent SU(N) symmetry, we will proceed to review the many-
body physics of these systems. This review is organized
as follows. In section 2, we discuss some interesting the-
oretical advancements and experimental results on trapped
SU(N) Fermi gases. In section 3, we discuss some of the
major works on quantum simulation of the SU(N) Fermi–
Hubbard model with ultracold AEAs in optical lattices. While
we primarily focus on experimental achievements, we also
provide a compendium of theoretical works on SU(N) lat-
tice models such as the Hubbard model, the Heisenberg
model, and the t− J model. Furthermore, we note that
while lattice AEA systems provide a powerful platform for
precision timekeeping and quantum computing, we do not
delve into these aspects in this review. We conclude in
section 4 by outlining some interesting directions for future
research.

2. Many-body physics of trapped AEA gases

The enlarged SU(N) symmetry results in enhanced interac-
tion effects in trapped AEA gases. This has remarkable con-
sequences such as a strong N-dependence of the compress-
ibility and collective mode frequencies as well as bosoniza-
tion in higher dimensions. We now proceed to expand on these
developments.

3
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2.1. Thermodynamics of the SU(N) Fermi liquid

We begin by examining the extension of the Fermi liquid
theory for N−component fermions with SU(N) symmetric
interactions; this system is described by:

H=
∑
k,γ

(
k2

2m
−µ

)
c†k,γck,γ

+
g
2

∑
k1,k2,k3,k4γ1 ̸=γ2

c†k1,γ1
c†k2,γ2

ck3,γ1ck4,γ2δk1+k2,k3+k4 ,

(3)

where ck,γ is the annihilation operator for a fermion of spe-
cies γ and momentum k. Before discussing the properties of
the SU(N) Fermi liquid, let us recall the standard Fermi liquid
(FL) theory formulated for a two-component fermionic sys-
tem with SU(2) symmetry. We note that when interactions are
adiabatically switched on in a Fermi gas, the one-particle states
continuously evolve into quasi-particle states with the same
spin and charge. For a spinless system, these quasi-particles
are described by a distribution function n(k) = n0(k)+ δn(k),
where n0(k) is the distribution function of the non-interacting
fermions. The change in energy, δE due to a change in the dis-
tribution function δn is given by:

δE= V
ˆ

d3k

(2π)3
ϵ(k)δn(k) , (4)

where ϵ(k) is the quasi-particle energy. Furthermore, the
change in the quasi-particle energy δϵ(k) due to a change in
the distribution function, δn(k) is given by:

δϵ(k) =
∑
k ′

f(k,k ′)δn(k ′) , (5)

where f(k,k ′) = f(k ′,k).
Following Lifshitz and Pitaveskii, we can extend this treat-

ment to a spin-1/2 Fermi gas [29]. In this case, the distribu-
tion function, n(k) becomes a 2× 2 matrix in terms of the spin
variables, such that:

N0 = V
∑
α

ˆ
d3k

(2π)3
nα,α (k) , (6)

where N0 is the total number of particles in the Fermi gas.
Similarly, the quasi-energy ϵ(k) also becomes a 2× 2 matrix
such that the change in the total energy, δE due to a change in
the distribution function δn is given by:

δE= V
ˆ

d3k

(2π)3
ϵαβ (k)δnβα (k) . (7)

We note that if the quasi-particle distribution function and the
energy do not exhibit any spin dependence then, nαβ = nδαβ
and ϵαβ = ϵδαβ . Finally we find that the change in the quasi-
particle energy δϵαβ(k) due to a change in the distribution
function, δn(k) is:

δϵαβ (k) =
∑
γ,δ

ˆ
d3k ′

(2π)3
fαγ,βδ (k,k ′)δnδγ (k) , (8)

where

fαγ,βδ (k,k ′) = fγα,δβ (k ′,k) . (9)

The spin-dependence of f primarily arises from the exchange
interaction, such that

fαγ,βδ (k,k ′) = F(k,k ′)δαβδγδ +G(k,k ′)
∑
a

σaαβ .σ
a
γδ,

(10)

where σa are the Pauli spin matrices.We note that on the Fermi
surface, F andG only depend on the angle θ between k and k ′.
The expression in equation (10) originates from the independ-
ence of the exchange interaction from the spatial orientation
of the total angular momentum. This ensures that the two spin
operators appear as a scalar product.

This theory was generalized to the SU(N) scenario by
Yip et al [30] (see [31] and [32] for extensions to finite
temperatures and one-dimension respectively). They did this
by describing the change in the quasi-particle energy at k,
δϵαβ(k) as a N×N matrix, that is related to the low-energy
quasi-particle excitations, δnδγ by:

δϵαβ (k) =
∑
k ′,γ,δ

fαγ,βδ (k,k ′)δnδγ (k ′) , (11)

where

fαγ,βδ (k,k ′) = fs (k,k ′)δαβδγδ + 4fm (k,k ′)
∑
a

TaαβT
a
γδ,

(12)

where the matrices Ta are the generators of the SU(N) group.
It is now fairly straightforward to extend the results for Landau
FL theory for SU(N) fermions. There are some remarkable
consequences of this generalization. For instance, the Stoner
instability in the SU(2) FL leads to a continuous phase trans-
ition from the paramagnetic to the Ferromagnetic phase.
However, for N> 2, this transition can become discontinu-
ous [33–35]. Another important quantity that is strongly influ-
enced by N is the isothermal compressibility, κ= 1

n2
dn
dµ given

by

κ0

κ
= 1+(N− 1)

2kFa
π

[
1+

2kFa
15π

(22− 4ln2)

]
(13)

where κ0 is the compressibility when a= 0, n is the particle
density, and µ is the chemical potential. Thus, in the weakly
interacting regime (kFa≪ 1), the SU(N) gas is effectively
(N− 1)-fold more repulsive than the SU(2)-gas.

Sonderhouse et al measured this compressibility exper-
imentally by examining the local density fluctuations [36].
Employing the fluctuation-dissipation theorem (FDT), the rel-
ative number fluctuations, η of a small sub-region of the gas
having an average of Ns atoms can be related to κ as η =

∆Ns
2
/Ns = nkBTκ, where kB is the Boltzmann constant. To

4
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Figure 2. (a)–(c) shows the integrated atomic density obtained after time-of-flight. The anisotropy of the cloud shown in (d)–(f) reflects the
anisotropy of the trap. (g)–(i) shows the anisotropy integrated along one direction. The red lines shows the anisotropy of the images in
(d)–(f), while the dashed blue lines correspond to the anisotropy obtained using a higher temperature. Reproduced from [36], with
permission from Springer Nature.

the first order in both temperature and the scattering length, a,
one obtains:

η =
3
2

T/TF

1+ 2
π (kFa)(N− 1)

, (14)

which clearly shows the enhanced effect of the repulsive inter-
action. We note that this expression can also be obtained by a
virial expansion of the partition function. From their measure-
ments, the authors find that T/TF = 0.16± 0.01, thereby indic-
ating that the gas is in the deeply degenerate regime. However,
it is interesting to note that the effect of interactions on the
density fluctuations can also bemimicked by lowering the tem-
perature of a non-interacting gas. Thus, to better characterize
the interaction effects, the experimentalists also investigated
the dynamics of the gas after being released from the trap. In
the expansion dynamics, the interactions lead to a preferential
movement of the atoms in the direction of the largest density
gradient lead to an anisotropic distribution of the cloud after
sufficiently long-times. The experimental results are shown in
figure 2; the strong role of interactions is evident here.

2.2. Bosonization and collective modes

One of the most intriguing features of a N−component Fermi
gas is that this system would exhibit bosonic behavior in
the large-N limit. This bosonization arises from a weakened
impact of the Pauli exclusion principle due to the large number
of internal states and is well-established in one-dimensional
systems. In 2012, the Florence group demonstrated this one-
dimensional bosonization in [37]. Intriguingly, recent theor-
etical results and experimental investigations have provided
strong evidence for bosonization in higher dimensions. This
has been achieved by probing the N-dependence of the col-
lective mode frequencies and the contact in these systems. We
now proceed to describe these studies.

The collective oscillations of trapped quantum gases in
response to external perturbations provide important insights
into the many-body physics of these systems. These oscil-
lations have been extensively studied in the case of two-
component Fermi gases, where the collective mode frequen-
cies and their damping rates reveal the effects of interac-
tions. He et al have extended these studies to the case of
AEA by examining the breathing and quadrupole modes of
a two-dimensional (2D) Fermi gas of 173Yb; they performed

5
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Figure 3. (a) The N−dependence of the breathing and quadrupole mode frequencies of a trapped gas of 173Yb atoms in two dimensions.
The breathing mode does not show any N−dependence due to a classical scale invariance, while the quadrupole modes show a strong
N−dependence. Reproduced from [38]. CC BY 4.0 (b) The s-wave contact C of SU(N) fermions shows a strong N−dependence
approaching the bosonic value, CB as N increases (CSU(N) ∼ CB(1− 1/N)). This shows the weakened effect of the Pauli exclusion
principle. Reproduced from [39]. CC BY 4.0.

the experiment by suddenly increasing the radial trap fre-
quency, thereby exciting multiple collective modes [38]. The
frequency of each collective mode was separately extracted by
tracking the center-of-mass and the cloud width. The results
obtained are shown in figure 3(a). It is clear that the breathing
mode does not show any dependence on the spin multiplicity
and stays at the value of 2ωd, where ωd is the dipole mode fre-
quency; this is a consequence of classical scale invariance in a
weakly interacting 2D gas. In contrast, mean-field effects lead
to a clear dependence of the quadrupole mode frequency, ωq ∝
(2ωd − g2D(N− 1)). We note that these experiments were per-
formed in the ‘collisionless’ regime. In contrast, in the hydro-
dynamic regime, collisions become extremely important. In
this case, the quadrupole-mode frequency is N−independent
ωhd
q = 2

√
ωd. Finally, we note that the damping rate of these

oscillations, 1
τ ∝ (N− 1), thereby highlighting the enhanced

effect of the interactions [40].
While collective modes play an important role in char-

acterizing the many-body physics of Fermi gases, the ther-
modynamic properties of a dilute quantum gas can be cap-
tured succinctly by the contact, C [41–43]. In particular, C
governs various thermodynamic quantities via universal rela-
tions. In [39], Song et al measured the N−dependence of s-
wave contact C from the momentum distribution of the Fermi
gas. Due to the spin-independent nature of the interactions,
the large-momentum tail scales as n(k) = C0/|k|4. where
CSU(N) = cpairN2

tot(1− 1/N), where Ntot is the total number of
fermions. Interestingly, the large-momentum tail for spinless
bosons is given by CB = cpairNtot(Ntot − 1)≈ cpairN2

tot. Thus
CSU(N) approaches CB with a 1/N scaling thereby demonstrat-
ing bosonization in three dimensions.

3. Quantum simulation with ultracold AEAs in
optical lattices

Quantum simulation with ultracold atoms in optical lattices
(OLs) has provided with an unparalleled avenue to study

many-body Hamiltonians relevant to condensed matter phys-
ics [44–47]. One the primary directions of the field is the
experimental study of the Fermi–Hubbard model (FHM) [48–
51]. The FHM model is central to condensed matter physics
since it is one of the simplest models that captures the essen-
tial features of strongly correlated materials and because it
accounts for many canonical correlated phases of matter these
systems exhibit. For example, in the 2D square lattice, it dis-
plays many of the phenomena observed in strongly correlated
materials such as theMott insulating phase, long-range antifer-
romagnetic (AFM) order, charge density waves, strangemetal-
licity, a pseudogap, spin-charge ‘stripe’ domains, and d-wave
pairing [52–59].

In its original SU(2) symmetric form, the FHM describes
the dynamics of spin-1/2 particles on a lattice with a nearest-
neighbor tunneling amplitude t, and an on-site interaction U:

H=−t
∑

σ=↑,↓

∑
⟨i,j⟩

(
c†iσcjσ + h.c.

)
−µ

∑
i

niσ


+U

∑
i

ni↑ni↓, (15)

where ⟨i, j⟩ denotes nearest neighbors, c†iσ (ciσ) is the cre-
ation (annihilation) operator for a fermion with spin σ on-site
i, niσ = c†iσciσ is the number operator for spin σ on site i, and
µ is the chemical potential that controls the fermion density.
The FHM successfully captures the physics of alkali atoms
loaded in OLs. In these experiments, different hyperfine states
of the alkali atom are used to represent the possible spin pro-
jections±1/2. The density is set by controlling the number of
particles N↑ and N↓ loaded into the lattice. The tunneling rate
t is controlled by changing the lattice depth, and the interac-
tion strength U is tuned via a magnetic Feshbach resonance.
For further details, [44–46] provide a comprehensive review of
the capabilities of these quantum simulators and their experi-
mental tools.

6
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Figure 4. In the SU(N) FHM, particles with spin flavor
σ = 1, . . . ,N (denoted by different colors) live on a lattice. These
particles can tunnel to neighboring sites with a hopping amplitude t.
When m atoms of different color occupy the same site, the energy is
raised by Um. The filling fraction is controlled by a uniform
chemical potential µ (not depicted here). Reproduced with
permission from [67].

In the case of fermionic alkaline-earth-like atoms (AEAs)
in their ground state, by selective populating nuclear spin pro-
jection statesmI and loading them into an OL, experiments can
engineer the SU(N) FHM with tunable N from 2, . . . ,10. The
SU(N) Hamiltonian is,

H=−t
∑
σ

∑
⟨i,j⟩

(
c†iσcjσ + h.c.

)
−µ

∑
i

niσ


+
U
2

∑
i,σ ̸=τ

niσniτ , (16)

where σ = 1, . . . ,N are the spin flavors, and N= 2I+ 1, where
I is the nuclear spin of the atoms. The Hamiltonian is graph-
ically depicted in figure 4.9Analogous to the SU(2) FHM, the
Hamiltonian in equation (16) exhibits a U(1) symmetry which
is reflective of a global charge conservation, i.e. the total num-
ber of particles is conserved, [H,

∑
iσ niσ] = 0. In addition,

the Hamiltonian is SU(N) symmetric, since the energy scales
t,U,µ are independent from σ. Experimentally, this means that
(1) since t and µ are controlled in a similar fashion to the
alkali case, balanced mixtures of Nσ atoms can be loaded into
a lattice with a desired depth which is independent of the spin
flavor. (2) The spin independence of the interaction term, i.e.
Uσ,τ = U∀σ,τ arises from the fact that fermionic AEAs fea-
ture an almost perfect decoupling of the nuclear spin I from

9 The interest in SU(N) symmetric Hamiltonians is not limited to Hubbard and
Heisenberg models, but also in two-band models such as the SU(N) Kondo
Lattice Model (KLM) [60, 61] which is commonly used in the study of man-
ganese oxide perovskites [62] and heavy-fermion materials [63]. However,
as of today, experimental efforts have mostly studied the single-band SU(N)
FHM, and we will therefore focus our attention on this model in this review.
Further discussion in how the SU(N) KLM can be engineered with AEAs in
OLs is presented in [27, 64].

the electronic structure in the ground state. Because of this
decoupling, the s-wave scattering lengths a for different mI

exhibit predicted variations of the order of 10−9 [27, 65, 66],
and therefore the interaction strengthU (which is proportional
to a) is independent of σ.

Mathematically, the SU(N) symmetry of equation (16)
means that the generators of the group, which are linear com-
binations of the spin permutation operators Sτσ =

∑
i c

†
iτcjσ,

satisfy the SU(N) algebra [Sτσ,S
β
α] = δατSβσ − δσβSτα, and

commute with the Hamiltonian [H,Sτσ]∀σ,τ . The SU(N) sym-
metry is reflective of the spin isotropy, and similarly to the
SU(2) case, the individual spin populations are conserved,
since Sσσ =

∑
i niσ commutes with H. For further details on

SU(N) group theory, [65] provides a useful brief digest, and
[68] is a comprehensive resource for group theory in general.

Before we proceed to discuss the study of the SU(N) FHM
using AEAs in OLs, a few important remarks are important to
discuss:

(i) Quantum fluctuations are imporant in the SU(N)
FHM.
A common question we have encountered arises in terms
of the 1/N expansion, and the assumption is that since the
spin has been enlarged, the system should behave more
classically. However, that is not the case.

The 1/N expansion technique was first used to under-
stand spin-1/2 systems that exhibit SU(2) spin symmetry.
In this expansion, one reduces the role of quantum fluctu-
ations by considering the classical limit of magnets with
large spin S. In doing so, the expectation value of the spins
acquires a definite value with a small variation around this
saddle point and thus the 1/N expansion provides amethod
to therefore obtain mean field theories [69–73].

In the 1/N expansion, the relevant operators are the
raising and lowering operators S±, which only connect two
possible values of the spin projections ±1/2, and there-
fore as S increases, the variance of the spin projection falls
off as 1/S. In contrast, for the SU(N) case even though
1/N can be small, the spin permutation operators Sτσ con-
nect all possible values of the spin projection and therefore
quantum fluctuations are relevant and play a major role
in the ground state spin structure (see figure 5). For this
reason, in the SU(N) case the variance does not go like
1/N.

(ii) The SU(N) FHM is a limit of multi-orbitals models.
Another common question is related to the connection to
solid state systems. In particular, that if electrons are spin-
1/2 particles, what do the spin flavors mean in the SU(N)
FHM?

In our introduction of the SU(N) FHM we mentioned
we have N spin flavors, which in the context of quantum
simulation with AEAs correspond to the nuclear spin pro-
jectionsmI. In order to make the connection with the prob-
lem of electrons in a solid, we need to recall that an elec-
tron that is bound to or nearly localized on an specific site
has three attributes: charge, spin, and orbital. While the
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Figure 5. In the 1/N expansion, the underlying algebra is SU(2),
and different states can only be reached by subsequent applications
of the raising and lowering operators (S+ depicted in the image). On
the contrary for the SU(N) algebra, the spin permutation operators
Sτσ connect all possible states. While in the former one the variance
of the spin expectation value decreases with the number of states, in
the latter one quantum fluctuations play an important role in the
physics.

SU(2) FHM considers a single orbital and the spin degree
of freedomwhich is invariant under SU(2) rotations, multi-
orbital models correspond tomodels in which higher orbit-
als are now considered.

The SU(N) FHM can be viewed as a limit of multi-
orbitals models, such as the ones used to describe trans-
ition metal oxides [74–76], in which the Hubbard para-
meters are independent of the spin and orbital degrees of
freedom. It is worth noting that such enhanced symmetry is
a crude approximation in solid state systems, where inter-
actions between different orbitals may vary over 10% or
more [75]. On the other hand, for ultracold atomic experi-
ments the SU(N) symmetry holds down to many orders of
magnitude as previously discussed.

We have to make an important distinction regarding
the origin of the enlarged symmetry in solid state sys-
tems and in quantum simulators with AEAs. While in
the former ones the enhanced symmetry arises from the
(degenerate) orbital and spin degrees of freedom, such that
a pseudo-spin operator can be constructed to satisfy the
SU(N) algebra, in the latter ones it arises purely from the
spin degree of freedom.

We now proceed to discuss the ground-breaking experi-
mental achievements in quantum simulators using ultracold
173Yb OLs. For organizational purposes we separate these
into two categories: (1) measurements of the equations of
state, in which characterization of the SU(N) FHM thermo-
dynamic variables is explored and (2) quantum magnetism,
in which the emphasis is focused on measuring spin cor-
relation functions. We note that even without interactions,
the spin states of AEA atoms can be employed to real-
ize synthetic dimensions. In particular, the Florence group
has realized synthetic hall ribbons with 173Yb atoms and
observed topological edge states [77]. However, in this work,
we primarily focus on studies, where interactions play a
crucial role.

3.1. Equations of state of SU(N) FHM

In this sub-section, we review some of the key experiments
that investigated the equations of state of the SU(N) FHM.

3.1.1. SU(6) Mott insulator. In a pioneering experiment in
2012, the Kyoto group successfully achieved the realization
of an SU(6)-symmetric Mott insulator in a three-dimensional
(3D) optical lattice [78]. The importance of this study is three-
fold: Firstly, this provided an experimental realization of an
SU(N> 2) FHM. Secondly, it provided experimental evidence
of a robust Mott plateau and the opening of charge gap via the
demonstration of a suppression in the isothermal compressib-
ility for N= 6. Thirdly, it demonstrated a process analogous to
‘Pomeranchuk’ cooling in solid 3He.

In this experiment, the SU(N) FHM was realized by load-
ing a balanced mixture of all the possible nuclear projections
of 173Yb in its ground state in a three dimensional cubic optical
lattice. The experiment started with a balanced mixture of all
nuclear spin states which is evaporatively cooled in a crossed
far-off resonant optical trap. At the end of evaporation, the
experimentalists had 1− 3× 104 atoms with a temperature
∼0.2TF. Atoms were subsequently loaded into an optical lat-
tice with lattice constant d= 266 nm. The lattice depth was
varied from 6–13 ER, to achieve U/6t ∈ [1.8,18.6].10

Figures 6 and 7 summarize the main results of this experi-
ment. In figure 6, the authors present experimental evidence
of the charge gap in the SU(6) Mott insulator by perform-
ing lattice modulation spectroscopy [79]. In this technique,
the system is subjected to a periodic modulation of the lat-
tice potential. If the modulation frequency ν roughly corres-
ponds to the energy ∆E required to generate an excitation,
that is, hν ≈∆E, then the system would, on average, absorb
energy. In the case of the FHM, excitations between particles
and holes are created at an energy of the order of the inter-
action strength U. Consequently, periodically modulating the
lattice causes energy absorption when the frequency matches
the excitation energy, that is, hν ≈ U [80]. Therefore, by peri-
odically modulating the lattice depth, resonant tunneling to the
occupied sites at the modulation frequency close to the Mott
gap U is obtained and double occupancies are induced.

The induced double occupancies can then be meas-
ured using photoassociation spectroscopy [81–84].
‘Photoassociation is the process in which two colliding
atoms absorb a photon to form an excited molecule’ [83].
Consequently, all atoms on doubly occupied sites can be
transformed into electronically excited molecules by the pho-
toassociation process, which rapidly escape from the trap.
Therefore, the loss of atom is the measure of the double occu-
pancy. The Mott gaps are clearly observed in figure 6 at higher
lattice depths.

10 The recoil energy ER is the natural energy scale for ultracold atom experi-
ments and is defined as ER = h̄2k2/2m. k= 2π/λ, λ is the wavelength of the
laser used to generate the optical lattice, and d= λ/2 is the lattice spacing.

8



J. Phys.: Condens. Matter 37 (2025) 083003 Topical Review

Figure 6. Lattice modulation spectra obtained for samples with
N= 1.9(1)× 104 particles and initial entropy per particle
s/kB = 1.9(2), for different values of the lattice depth in ER. The
panels show the emergence of a peak centered around the frequency
corresponding to the Mott gap (i.e. the measured values of on-site
interaction U for the corresponding lattice depth). Reproduced from
[78], with permission from Springer Nature.

We now discuss the final important achievement of this
experiment—the demonstration of ‘Pomeranchuk’ cooling
with SU(N) fermions. Historically, Pomeranchuk cooling was
first predicted in the context of 3He [85], where solidifying
liquid 3He at low temperatures (<0.3K) leads to cooling [86].
This intriguing effect originates from the higher entropy asso-
ciated with the symmetry-broken solid phase compared to the
itinerant Fermi liquid. In the Fermi liquid phase, only fermi-
ons near the Fermi surface contribute to the entropy at low

temperatures; this contribution scales linearly with the tem-
perature, T. In contrast, in the localized solid phase, each site
with spin-1/2 contributes an entropy of ln(2) as long as the
temperature T, and the spin exchange coupling strength, J are
of the same order of magnitude. When a mixture of solid and
liquid 3He is compressed adiabatically at low temperatures, the
liquid partially solidifies and the solid has the same entropy as
the liquid that it replaces. This adiabatic redistribution of the
entropy leads to cooling.

In the context of the Kyoto group experiment [78],
‘Pomeranchuk’ cooling refers to the process where the entropy
from themotional degrees of freedom of the Fermi gas is trans-
ferred to the spin degrees of freedom, thereby resulting in a
lowering of the temperature of the system. The experimental
evidence of ‘Pomeranchuk’ cooling for the N= 6 Fermi gas
is presented in figure 7, which was originally predicted in [87,
88]. This cooling is reflected in the final temperature of the
sample, and it was observed by comparing results for N= 2
and N= 6, for which the final temperature in the lattice after
adiabatic loading (i.e. total number of particles and entropy are
conserved) is lower for N= 6 than for N= 2 (see figure 7(b)).
The lower temperature for largerN is a consequence of entropy
contribution of an isolated spin, which is ∝ ln(N). Thus, for
large system sizes, the Mott insulating state can be cooled
to much lower temperatures, when N is large. In addition,
figure 7(c) demonstrates that for the lowest temperature T/t
achieved in each case, only the N= 6 case develops a robust
Mott plateau at the center of the trap with an entropy per site
close to ln(N).

3.1.2. Mott crossover in three-dimensional OLs. The
Munich group has investigated the equation of state (EoS) of
the SU(3) and SU(6) FHMs in a cubic 3D optical lattice [89].
The relevance of this study is three-fold: First, the experi-
mental investigation of the EoS for the density n(µ,T,N,U) for
a wide range of chemical potentials and interaction strengths.
Second, the experimental evidence of the metal-to-insulator
crossover via the experimental determination of the local com-
pressibility. Third, the lack of thermometry in the experiments
at interaction strengths of the order of the bandwidth (U≈W)
served as a motivation for the development of more sophistic-
ated numerical methods to analyze this system.

In this experiment, the SU(N) FHMwas realized by prepar-
ing a degenerate Fermi gas of 173Yb with N= 6 equally pop-
ulated spin components via evaporative cooling in a crossed
dipole trap. At the end of evaporation, the Munich group had
5× 103 atoms per spin state at temperature T= 0.07TF. For
the experiments with N= 3, they remove individual spin com-
ponents by driving the 1S0 → 3P1 optical transition in the
presence of a homogeneous magnetic field that lifts the spin-
state degeneracy, and are left with an SU(3) Fermi gas at
T= 0.15TF with a residual fraction of unwanted spin compon-
ents below 5%. Atoms are then loaded into an optical lattice
with lattice constant d= 380 nm. The lattice depth was varied
from 3-15ER to achieve U/12t ∈ [0.128,11.0].
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Figure 7. Results are presented for N= 1.9(1)× 104 particles and U/6t= 10.47. (a) Temperatures of the SU(6) (blue circles) and SU(2)
(red open circles) Fermi gases after adiabatic loading in the lattice as a function of the initial temperature. (b) Calculated density and
entropy profiles at the lowest temperatures indicated by squares in a) for SU(6) (blue solid line) and SU(2) (red dashed line) using a second
order high-temperature series expansion (HTSE). Reproduced from [78], with permission from Springer Nature.

Figure 8. Density as a function of the chemical potential for N= 3 (red diamonds) and N= 6 (blue squares) Fermi gases in a 3D lattice.
Here t∗ = 12t=W is the non-interacting bandwidth of the 3D lattice. (a) U/t∗ = 0.128 (b) U/t∗ = 0.89 (c) U/t∗ = 3.6. Solid lines are fits
to the non-interacting Fermi gas EoS for densities below 0.5. Dashed lines are a second-order high temperature series expansion to extract
the temperature (in green for N= 2 for comparison). Reproduced from [89]. CC BY 3.0.

Figures 8 and 9 summarize the main results of the experi-
ment. In figure 8 the authors present the experimentally meas-
ured density as a function of the chemical potential for differ-
ent values of the interaction strength U/t. These results high-
light that for U≪ t, the system is metallic and can be approx-
imately described by the non-interacting theory for n< 1 (see
figure 8(a)), whereas for U≫ t, the single site limit is a good
approximation and can provide a good interpretation of the
data (see figure 8(c)). However, for interactions of the order
of the bandwidth U∼W (figure 8(b)), the system is a strongly
correlated many-body state and at the time of publication in
2016 there were no numerical techniques to compare against.

In figure 9, the authors exploit the model-free access to
the EoS for the density to measure the local compressibil-
ity κ̃= n2κ= ∂⟨n⟩/∂µ|T. In the strongly-interacting case (see
figure 9(b)), the compressibility is suppressed around ⟨n⟩= 1,
which is consistent with the opening of charge gap and the
development of a Mott insulator. In addition, the Mott cros-
sover is studied in figure 9(c) where the minimum of the com-
pressibility in the region 0.85< ⟨n⟩< 1.15 is presented as a
function of the interaction strength. The minimum in the com-
pressibility exhibits a suppression of roughly 1 order of mag-
nitude and saturates at a minimum value for large U/t, indic-
ating the system is deep in the Mott insulating state.

3.1.3. EoS and Mott crossover in 2D OLs. Building upon
their previous work, the Munich group recently realized a pre-
cise characterization of the EoS of the SU(N) FHM in the 2D
square lattice forN= 3,4,6, and the results of their experiment
are reported in [90]. The relevance of this study lies in: (1) The
implementation of a 2D single-layer SU(N) ensemble which
can be probed with perpendicular absorption imaging with a
resolution of a few lattice sites. (2) The opportunity to bench-
mark state-of-the-art numerical methods that were recently
developed and adapted to explore the SU(N) FHM in exper-
imentally accessible regimes, such as determinant quantum
Monte Carlo (DQMC) and numerical linked cluster expan-
sions (NLCE) [67, 91, 92]. (3) The experimental demonstra-
tion of thermometry for SU(N) Fermi gases in OLs in a model-
independent way using the FDT.

In this experiment, the SU(N) FHM was realized by
first loading a spin-balanced mixture of approximately 1.6×
106 173Yb atoms from a magneto-optical trap into a crossed
optical dipole trap, where evaporative cooling is performed
down to T/T(3D)F < 0.2. Subsequently, a second stage of evap-
orative cooling is performed in the presence of an optical
gradient, yielding an ensemble of N∼ 2× 103 atoms in the
central plane of a vertical lattice with wavelength λ= 759 nm
and lattice spacing dvertical = 3.9 µm. In this configuration,
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Figure 9. Compressibility for N= 3 (red diamonds) and N= 6 (blue squares) Fermi gases in a 3D lattice. Here t∗ = 12t=W is the
non-interacting bandwidth of the 3D lattice. Insets correspond to the compressibility as a function of density at (a) U/t∗ = 0.59, and (b)
U/t∗ = 3.6. Dashed lines are a second-order high temperature series expansion. (c) Minimal compressibility κ̃min as a function of the
interaction strength, where κ̃0 is the compresssibility of the non-interacting SU(6) FHM at ⟨n⟩= 1. Reproduced from [89]. CC BY 3.0.

Figure 10. Equation of state for the SU(N) FHM for N= 6 (blue), N= 4 (purple), and N= 3 (red). Density (circles) and parity projected
measurements (diamonds) are presented as a function of the chemical potential for different interaction strengths (a) U/t= 2.3, (b)
U/t= 7.5, (c) U/t= 10.48, and (d) U/t= 33.2. Solid lines associated to the density curves correspond to the fit of the EoS to DQMC (a)
and NLCE (b)–(d) to realize thermometry. The results from the fit models are also used to calculate the parity projected measurements. All
spin mixtures were prepared with the same initial entropy per particle s/kB = 1.2 in the bulk before loading into the lattice. Reproduced
from [90]. CC BY 4.0

the authors implemented a 2D single-layer SU(N) ensemble
with lattice spacing for d= 380 nm. The implementation of a
single-layer is crucial, as it avoids integration over inhomogen-
eous stacks of 2D systems. It also allows for direct access to
the density profile without the reconstruction techniques previ-
ously required in [89], and which allows for the measurement
of density fluctuations. The density distribution is measured
using in situ, saturated absorption imaging with a spatial res-
olution of approximately 2 µm≈ 5d.

The main results of this experiment are summarized in
figures 10 and 11. In figure 10 the authors present the experi-
mentallymeasured densities (circles) and photoassociated par-
ity projected measurements (diamonds) as a function of the
chemical potential for different values of N and the interaction
strength U/t. The fit of the EoS was performed in two dimen-
sions, with the temperature T and the chemical potential at the
center of the trap µ0 as the free parameters, where the local

density approximation was used to incorporate the contribu-
tions of the trap confinement [93]. For U/t= 7.5 and U/t=
10 experiments fitted both DQMC and NLCE, observing an
excellent agreement between the theory and the experiment
yielding consistent fitting parameters for the two different
numerical methods. For U/t= 33, results from NLCE and
a second order HTSE also display excellent agreement. For
U/t= 2.3 the temperature lies below the range of convergence
of NLCE and experiments resorted to DQMC alone.

In addition to the total density, in figure 10 the authors also
characterized the number of double occupancies in the model
by removing doublons via photoassociation. When available,
the NLCE prediction (lines) based on the density’s fit and
without any further free fit parameters was compared to the
experimental observations (diamonds), and they correspond
well with the experimental data. Because of the possibility to
directly access the density in the 2D single-layer, measurement
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Figure 11. Comparison of the temperatures obtaind using the fluctuation-dissipation theorem (FDT) [dark blue diamonds] and the fits to the
equation of state (EoS) [light blue hexagons]. Error bars are the standard error of the mean. Reproduced from [90]. CC BY 4.0

Figure 12. The Raman coupling lifts the degeneracy between the states, creating two dressed states with different energies. The competition
with the hopping can drive a metal-to-insulator transition already in the non-interacting case. Reproduced from [96]. CC BY 4.0

of density fluctuations could be performed. By measuring the
density fluctuations, the FDT connects the variance of the
detected atom number in an area A≫ d2 to the isothermal
compressibility κ and the temperature T via

κA=
1
kBT

var

(ˆ
A
ndA

)
, (17)

providing model-free thermometry [94, 95]. In figure 11, the
authors compared the temperature obtained using the FDT
(squares) against the temperature returned by the fit to the EoS
(hexagons), and observed good agreement for all interaction
strengths.

3.1.4. Flavor-selective localization in three-dimensional OLs.
In a recent experiment, the Florence group realized flavor-
selective Mott localization in an SU(3) Fermi gas in a 3D
optical lattice [96]. This study is relevant because it corres-
ponds to: (1) the experimental realization of multicompon-
ent Hubbard physics with coherent internal couplings. (2)
The experimental achievement of studyingMott physics while
explicitly breaking the SU(3) symmetry. In this experiment,
a three-component ultracold 173Yb mixture with total atom
number N= 4× 104 at an initial temperature of T≈ 0.2TF

was used, which was loaded into a 3D cubic OL with lat-
tice constant d= 380 nm. As previously discussed, AEAs in
OLs are well described by the SU(N) symmetric FHM (see
equation (16)). In this experiment, the authors explicitly broke

the SU(N) symmetry by introducing the following term

HR =
Ω

2

∑
i

(
c†iσciτ + h.c.

)
, (18)

which describes a coherent on-site coupling between spin fla-
vors σ and τ . This coupling is provided by a two-photon
Raman process with Rabi frequency Ω. At the single particle
level, this Raman coupling lifts the degeneracy between the
spin flavors, by creating two dressed states |±⟩= (|σ⟩±
|τ⟩)/

√
2, with energy shifts ±Ω/2 relative to the other spin

flavors (see figure 12).
The coherent coupling between states mI = 5/2 and mI =

1/2 was realized by using a two photon σ+/σ− Raman trans-
ition. In this scheme, the Raman coupling is implemented with
two co-propagating laser beams with wavelength λ= 556 nm
and angular frequenciesω andω+ δω, which are blue-detuned
by 1.754 GHz with respect to the 1S0 → 3P1 (F= 7/2) recom-
bination transition to reduce inelastic photon scattering. A
150 G magnetic field is used to define a quantization axis
and to lift the degeneracy between the six hyperfine states
of 173Yb ground state manifold, which are split by 207×mI

Hz/G. The σ+/σ− coupling between mI = 5/2 and mI = 1/2
is obtained by setting the polarization of the two beams to be
orthogonal with respect to the quantization axis and by adjust-
ing δω/2π to compensate the Zeeman splitting and the resid-
ual Raman light shift between the two states [77]. For meas-
urements at Ω= 0, the authors utilized optical pumping of
the 1S0 →3 P1 transition to prepare a balanced mixture in the
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Figure 13. Average doublon fraction fd as a function of (a) U/D at Ω= 0 (b) Ω/D at U/D= 2.6. Here D= 6t=W/2 is half the
bandwidth. (c) γ(12) measures the number of atoms forming doublons in the | 52 ,

1
2 ⟩ channel, normalized by the total number of atoms

forming doublons. Reproduced from [96]. CC BY 4.0

hyperfine states mI =±5/2,1/2. While for measurements at
Ω ̸= 0, the loading procedure started with with a 2-component
unbalanced mixture of atoms in states mI =±5/2, such that
N5/2 = 2N/3 and N−5/2 = N/3. Then after loading the lattice,
the Raman beams were turned on far detuned from any two
photon transitions, and an adiabatic frequency sweep was per-
formed to bring them resonant to the 5/2↔ 1/2 transition.
This procedure corresponds to an adiabatic passage that brings
an atom in the mI = 5/2 state to the lowest energy dressed
state |+⟩= (|5/2⟩+ |1/2⟩)/

√
2. At the end of the process, the

population in equally distributed between the three hyperfine
states.

The main results of this experiment are summarized in
figure 13. In figures 13(a) and (b) the authors study the beha-
vior of the number of double occupancies as an indicator of
the degree of theMott insulating nature of the system.While in
figure 13(a) the emergence of an SU(3)Mott insulator is indic-
ated by the expected suppression of the doublon fraction as
the interaction strength increases, figure 13(b) illustrates that
the doublon fraction decreases as the Rabi coupling increases,
leading to a similar Mott localized state. Figure 13(c) demon-
strates that the double occupancies are flavor-dependent when
Ω> 0. In this figure, γ(12) = Nd(12)/Nd is the number of
atoms forming doublons in the | 52 ,

1
2 ⟩ channel normalized by

the total number of atoms forming doublons. In the absence
of Raman couplings (Ω= 0) the results agree with the N= 3
symmetric expectation value (dotted line). As Ω increases, the
SU(3) symmetry is broken and γ(12) diminishes, approach-
ing zero as Ω≈ D= 6t=W/2 half the bandwidth. Doublons
acquire a flavor-selective behavior, since doublon formation in
the | 52 ,

1
2 ⟩ channel is suppressed because it requires fermions

in both the |±⟩ states which have an additional energy cost of
Ω/2 in contrast to the other two channels | − 5

2 ,
1
2 ⟩ and |

5
2 ,−

5
2 ⟩.

3.2. Quantum magnetism

In this sub-section, we review some pioneering experiments
that investigated quantum magnetism in the SU(N) FHM.

3.2.1. Antiferromagnetic spin correlations in a dimerized lat-
tice. In [97], the Kyoto group reported their measurements
of nearest-neighbor AFM correlations in a Fermi gas with
SU(4) symmetry in an optical superlattice. The importance of
these results are two-fold. First, at a fixed entropy per particle,
AFM nearest-neighbor correlations are enhanced for N= 4
compared with N= 2. Second, it was the first experimental
utilization of the single-triplet oscillation technique [98] to
measure nearest-neighbor spin correlation functions forN> 2,
and set up the basis to measure those in lattices with uniform
tunnelings, which were further reported in [99]. In this exper-
iment, the N= 2 and the N= 4 FHMs were realized by load-
ing 173Yb in an optical superlattice with wavelengths λ= 1064
and λ= 532 nm, for the long and short lattice, respectively.
During evaporative cooling, optical pumping is performed to
create SU(2) or SU(4) samples. After loading into the lattice,
nearest-neighbor AFM correlations between adjecent sites in
the optical superlattice were measured using the singlet-triplet
oscillation (STO) technique, which we describe below.

The STO technique is presented in figure 14. In thismethod,
after atoms are loaded into the lattice, the lattice depth is
ramped up to suppress tunneling, and freeze atoms in place.
Then a spin-dependent gradient beam is used to induce oscil-
lations between the singlet and triplet states. Depending on
the STO time, the spins form a doublon in the lowest band
or a state with one spin in the lowest band and the other one
in the first excited band after sites are merged. Performing
photoassociation, the double occupancies are removed and the
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Figure 14. (a) Detection sequence for singlets and triplets in a dimer. Shown is the case of two spins per dimer. Reprinted (figure) with
permission from [97], Copyright (2018) by the American Physical Society.

Figure 15. The normalized STO amplitude in a dimerized lattice as a function (a) the initial entropy per particle and (b) the intradimer
tunneling td at U/h= 3.0 kHz. (a) Red (blue) markers correspond to N= 2 (N= 4) and results are presented for td/t= 27. (b) Results for
N= 4. Here the tunneling rates vary from t ∈ [28.0,100] Hz, and tyz/t ∈ [1.7,1.0]. Reprinted (figure) with permission from [97], Copyright
(2018) by the American Physical Society.

associated particle loss is measured, which is proportional to
the spin–spin correlation function.

The main results are summarized in figure 15, where the
authors present the normalized STO amplitude A as a func-
tion of (a) the initial entropy per particle and (b) the intradi-
mer tunneling. In figure 15(a) the authors show that the nor-
malized STO amplitude decreases as the initial entropy per
particle increases since the triplet states become thermally
populated. Furthermore, they demonstrate that AFM correl-
ations are enhanced in the SU(4) system compared to SU(2)
for the same initial entropy. This enhancement is due to the
difference of the fraction of singlet configurations among all
possible states

(N
2

)
, and the cooling effect related to spin

entropy that was previously observed [78]. In figure 15(b) the
authors discuss the dependence of A on the intradimer tun-
neling rate td. As td decreases, the normalized STO amplitude
decreases because the excitation energy to the triplet state is
lowered, which in the two particle two site sector, is given by

−U/2+
√

16t2d +U2/2. The experimental data suggests that

although nearest-neighbor AFM correlations get smaller as td
is lowered, they should retain a non-vanishing amplitude in the
isotropic lattice.

3.2.2. Antiferromagnetic spin correlations in OLs with uni-
form tunnelings. Building upon their previous work in
strongly dimerized optical lattices, theKyoto group thenmeas-
ured SU(N) AFM nearest-neighbor spin correlations in OLs
with isotropic tunnelings. Besides being the first experimental
determination of SU(N) AFM correlations in lattices with
homogeneous tunnelings, an important milestone of this study
corresponds to the creation of the coldest fermions ever cre-
ated in nature in absolute temperature and in cold atoms. In
this experiment, spin-balanced mixtures of 2.4× 104 173Yb
atoms are adiabatically loaded into 1D, 2D and 3D cubic OLs
with lattice constant d= 266 nm. To achieve the lower dimen-
sional lattices, a strong tunneling anisotropy is introduced in
one or two directions to suppress tunneling in that direction
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(the inter-lattice tunneling is ≲5% than the intra-lattice
tunneling).

After loading into the lattice, nearest-neighbor AFM cor-
relations were measured using the STO technique. Similarly
to [97], the application of a spin-dependent potential gradi-
ent before the merging process drives oscillations between
the singlet and the triplet states in two adjacent sites. Such
spin-dependent potential gradient is generated by applying an
optical Stern–Gerlach laser beam close to the 1S0 → 3P1 res-
onance, with a detuning of+2.6 GHz from theF= 5/2→ 7/2
transition, which minimizes the ratio of the photon scattering
rate to the differential light shifts. Experiments measure the
fraction of both singlet and triplet states formedwithin nearest-
neighbour lattice sites. It is important to notice that the naming
‘singlet’ and ‘triplet’ in this context corresponds to the SU(N)
counterparts of the SU(2) double-well singlets and triplets, and
should not be confused with SU(N) singlets and triplets, which
are N-body entangled states [74].

The detected SU(N) counterpart of the SU(2) double-well
singlet is a

(N
2

)
-fold multiplet of the form (|σ,τ⟩− |τ,σ⟩)/

√
2,

while the the double-well triplet is a [
(N
2

)
+ N]-fold multiplet,

among which the
(N
2

)
states of the form (|σ,τ⟩+ |τ,σ⟩)/

√
2

are detected by the STO scheme, while the case σ = τ is
not. The STO measurement is valid only if the contribution
from multiple occupancies can be neglected, and therefore
the authors set the density at the center of the trap to one
particle per site on average, and set the interaction strength to
a large value of U/t= 15.3 to strongly supress the formation
of double and higher occupancies.

The main results of the manuscript are summarized in
figures 16 and 17. In figure 16 the authors present the exper-
imentally measured STO imbalance I and amplitude A for
SU(6) and SU(2) Fermi gases in 1D and 3D OLs as a func-
tion of entropy per particle. The imbalance and the amplitude
are defined as,

A=− 1
Nptcl

[CNN]total (19)

I=
2A

A+ [n(i)n(i+ 1)]total /Nptcl
, (20)

where ⟨n(i)n(i+ 1)⟩ is the nearest-neighbor density–density
correlation function, and CNN is the nearest-neighbor spin–
spin correlation function,

CNN =
∑
σ ̸=τ

[⟨nσ (i)nσ (i+ 1)⟩− ⟨nσ (i)nτ (i+ 1)⟩] , (21)

which measures the likelihood of having a different spin fla-
vors on adjacent sites11. In the local-density approximation
(LDA),

[O]total =

ˆ
d3r

d3
⟨O(µ(r,T)⟩ (22)

11 It is easy to see that in the limit N= 2, CNN reduces to the SU(2) nearest-
neighbor ⟨SzSz⟩nn correlation function.

Figure 16. Entropy dependence of the (a) normalized STO
amplitude A (b) singlet–triplet imbalance I. Results are presented for
1D and 3D lattices, showing experimental data for the SU(6) 1D
(green squares), SU(6) 3D (red circles) and SU(2) 1D systems (blue
triangles). Horizontal error bars represent the standard deviation of
ten entropy measurements, while vertical error bars are extracted
from the fitting errors in the analysis of the STO signal. Numerical
calculations with ED (solid lines) and DQMC (dashed lines) are also
displayed. Shaded areas represent uncertainty from the systematic
and statistical errors of the numerical methods plus the possible
systematic error (20%) in the total atom number measurement.
Reproduced from [99], with permission from Springer Nature.

for an arbitrary observable O.
Figure 16 demonstrates that at fixed entropy per particle,

AFM nearest-neighbor spin correlations get enhanced as N
increases, and also that these correlations appear at higher
entropy for larger N. This last point can be easily inter-
preted deep in the Mott regime at 1/N filling, in which the
minimum entropy per site attainable before any correlations
develop is ln(N). As the temperature is lowered, entropy is
lowered as correlations develop. Furthermore, it illustrates the
dimensionality dependence, with the 1D case exhibiting the
largest correlations. This behavior is similar to previous stud-
ies in an SU(2) system [98, 100, 101] and can be under-
stood at sufficiently high temperatures. In this regime, correla-
tions depend only on temperature not dimension, and decrease
with increasing temperature. Additionally, as the dimension-
ality decreases, the bandwidth also decreases, and therefore,
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Figure 17. Thermometry of an SU(6) Fermi gas in a one-dimensional OL at U/t= 15.3. (a)–(c) Solid lines correspond to exact
diagonalization results in L sites chains. Green circles and lines correspond to finite-size extrapolations. Dashed vertical lines correspond to
the range of the largest experimentally measured STO imbalance in 1D that is consistent with error bars. (d) Extracted temperatures from
the STO imbalance, amplitude and the initial entropy per particle. Error bars come from the measured correlations error bars (blue), the
finite-size error (red), the particle number fluctuation (green), and their sum (black). Reproduced from [99], with permission from Springer
Nature.

at fixed entropy, the temperature decreases. These arguments
together imply that correlations decrease as the dimensional-
ity is increased. The authors observed that the experimental
data show reasonable agreement with theoretical predictions
obtained by exact diagonalization (ED) for 1D and by DQMC
for 3D, without any fitting parameters. In the case of N= 6 in
3D, the experiments reach entropies below the regime where
the calculations converge, highlighting the importance of these
experiments as quantum simulations, and providing motiva-
tion for the development and refinement of numerical tech-
niques to mitigate the sign problem to reach lower temperat-
ures [102, 103].

At that time, this experiment did not have the capabilities
to directly measure the temperature at the very low entrop-
ies studied. However, for the 1D systems, the temperature
was inferred by comparing experiment and theory. In 1D, the
lowest temperature achieved in the experiments corresponds
to kBT/t= 0.096± 0.054± 0.030, obtained from the exper-
imentally measured STO imbalance I at S/NptclkB = 1.45±
0.05. The first error bar corresponds to the finite-size error of
the calculations, and the second one corresponds to the exper-
imental errors in the correlation measurements. The details
of the thermometry are presented in figure 17, where estim-
ates of the temperature using A instead of I, yield consist-
ent results. For comparison, to obtain the same singlet–triplet
imbalance, theN= 2 system should be at S/NptclkB = 0.499±
0.136± 0.120. Since the state-of-the-art experiments of the
SU(2) FHM with alkali atoms in OLs perform at an entropy
per particle∼1kB (kBT/t= 0.25± 0.2) [104], this suggests an
experimental advantage for SU(N) systems in obtaining highly
correlated states in optical lattices.

The experimental studies of the thermodynamic and mag-
netic properties of the SU(N) FHM using AEAs in optical lat-
tices pave the way toward more direct quantum simulation of
typical 2D models of interest in naturally occurring systems
with SU(N> 2) representations such as transitionmetal oxides
and orbitally selective Mott transitions. A fascinating example
is the cerium volume collapse, which has long been debated
as to whether the single-orbital Hubbard model (N= 2) or the
double-orbital Hubbardmodel (N= 4) [105–108] is the proper
description. Although the SU(N) symmetry is usually only

roughly realized in condensed matter cases, quantum simu-
lators with AEAs offer an almost exact realization of SU(N),
enabling the implementation of fully SU(N)-symmetric and
formerly purely theoretical models. More generally, AEAs
quantum simulations of the SU(N) FHM can shed light on
the validity of the SU(N) approximation in more realistic
models, and it should even be possible to smoothly connect
both regimes in a continuous way by controlled symmetry-
breaking using techniques like optical state manipulation or
state-dependent potentials [27, 96, 109].

Furthermore, in the 2D square lattice, a question of import-
ance in the SU(2) FHM arises at half-filling and finite dop-
ings around ⟨n⟩= 1. One of the relevant aspects of quantum
simulation of the SU(N) FHM at 1/N-filling (⟨n⟩= 1), is that
at this filling, the N> 2 FHM enables us with the possibil-
ity to untwine the role played by nesting and Mott physics
because, unlike SU(2), a finite U is needed to open a charge
gap. While the SU(2) FHM at 1/2-filling shows a van Hove
singularity in the density of states and perfect nesting of the
Fermi surface, the N> 2 counterparts achieve ⟨n⟩= 1 without
these unique band structure features. This enables us to isolate
the effect of interactions from band structure attributes without
having to take into account next-nearest-neighbor tunneling
amplitudes t′, which are difficult to control in experiments
involving ultracold atoms.

3.3. Overview of computational and theoretical works on
SU(N) lattice models

Historically, the study of SU(N) quantum magnetism arose
from the mathematical technique of large-N expansions [69–
73]. However, the possibility of exploiting the inherent SU(N)
symmetry of AEAs what has attracted more attention to
SU(N)-symmetric Hamiltonians, both theoretically and exper-
imentally [27, 64, 65, 171]. In the last decade, a series of the-
oretical predictions and state-of-the art numerical calculations
have been performed on the SU(N) FHM for different values
of N at T = 0, finite temperature, filling fractions, and for vari-
ous geometries and limits. In all of these cases, the SU(N)
lattice models are predicted to display a variety of interest-
ing phases with novel and rich properties depending on the
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Table 1. Short compendium of the theory of SU(N) Lattice models.

Model N Geometry T Methods References

Hubbard 2–4, 6 Square F DQMC, NLCE, HTSE, ED [91]
Hubbard 3 Square F DQMC, NLCE [92]
Hubbard 3 Square 0 CPQMC [102]
Hubbard ⩾2 Square F RG, MF [110]
Hubbard 2,4,6 Square 0 Projector QMC [111]
Hubbard 6 Square 0 Projector QMC [112]
Hubbard 2,4,6 Square F DQMC [113]
Hubbard 2–4 Square F HTSE [114]
Hubbard 4 Square 0 Projector QMC [115, 116]
Hubbard 4 Square F DMFT [117]
Hubbard 3–10 Square 0 SRMF [118]
Hubbard 4 Square F DMFT [119]
Hubbard 6 Square F FLT [120]
Hubbard 2–6 Square 0 ED [121]
Hubbard 6 Square F Diagrammatic QMC [122]
Hubbard 2,4,6,8 Square 0 large-N, Projector QMC [123]
Hubbard 2,4,6 Square, Honeycomb 0 Projector QMC [124]
Hubbard 2–6 Square, Honeycomb, Triangular 0 ED [125]
Hubbard 3 Square, Cubic, Bethe F DMFT, VMC [126]
Hubbard 3 Square, Cubic F DMFT [127]
Hubbard 3 Cubic F DMFT [128]
Hubbard 2–5 Chain 0 DMRG, BA, Bos [129]
Hubbard 2–4,6,10 Chain F SSE-QMC [130]
Hubbard 2,3,4 Chain 0 GFMC [87]
Hubbard 4–14 Chain F SSE-QMC [131]
Hubbard 3 Chain 0 DMRG [132]
Hubbard 2–5 Chain 0 DMRG [133]
Hubbard 4 Chain 0 BA, DMRG [134]
Hubbard 2–6 Chain F DMRG [135]
Hubbard 4 Honeycomb F HTSE [136]
Hubbard 4,6 Honeycomb 0 Projector QMC [137]
Hubbard 4,6 Honeycomb F DQMC [138]
Hubbard 3 Honeycomb 0 Projector QMC [139]
Hubbard 3 Honeycomb 0 iPEPS [140]
Hubbard ⩾2 Bipartite 2D F HTSE [141]
Hubbard 3 Triangular F DMFT [142–144]
Hubbard 2,3 Lieb 0,F MF [145]
Hubbard 3 Bethe 0 DMFT [146]
Hubbard 2,4,6 F HTSE [88]
Hubbard 2–5 F DMFT [147]
Hubbard 2–6 F DMFT [148]

Heisenberg 3 Square, Cubic 0 ED [149]
Heisenberg 3 Square, Triangular 0 DMRG, iPEPS [150]
Heisenberg 4 Square 0 ED, iPEPS [151]
Heisenberg ⩾2 Square 0 large-N [152]
Heisenberg 5,8,10 Square 0 ED [153]
Heisenberg ⩾2 Square 0 large-N [154]
Heisenberg 2–5 Chain F CTWLMC [155]
Heisenberg 3,4 Chain, Square, Triangular F HTSE, ED [156]
Heisenberg >2 Chain 0 CFT, ED,DMRG [157]
Heisenberg 3 Honeycomb 0 ED, iPEPS, VMC [158]
Heisenberg 3 Honeycomb 0 DMRG [159]
Heisenberg 3 Honeycomb 0 LFWT [160]

(Continued.)
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Table 1. (Continued.)

Model N Geometry T Methods References

Heisenberg 4 Honeycomb 0 MF, VMC [161]
Heisenberg 4 Honeycomb 0 ED, iPEPS, VMC [162]
Heisenberg 6 Honeycomb 0 ED, iPEPS, VMC [163]
Heisenberg 3 Triangular 0,F CMF, semiclassical MC [164]
Heisenberg 2–9 Triangular 0 MF [165]
Heisenberg 4 Triangular 0 MF, LFWT, ED [166]
Heisenberg 3 Kagome 0 ED, iPEPS [167]

t− J 3 Square 0 DMRG [168]
t− J 4 Chain 0 DMRG [169]

SSH 2–5 Square 0 Projector QMC [170]

Abbreviations F: finite-temperature. MF: mean-field, MC: Monte Carlo, QMC: Quantum Monte Carlo, BA: Bethe-Ansatz, Bos: Bosonization, CFT:
conformal field theory, CMF: cluster MF, CTWLMC: continuous-time world-line MC, CPQMC: constrained path QMC, DMFT: dynamical mean-field
theory, DMRG: density matrix renormalization group, DQMC: determinant QMC, ED: exact diaonalization, FLT: Fermi liquid theory, GFMC: Green’s
function MC, HTSE: high-temperature series expansions, iPEPS: infinite projected entangled-pair states, LFWT: Linear-flavour-wave theory, NLCE:
numerical linked cluster expansion, RG: renormalization group, VMC: variational MC, SRMF: slave rotor mean-field, SSE-QMC: quantum MC simulations
within the stochastic series expansion (SSE), SSH: Su-Schrieffer-Heeger.

value of N. For instance even at weak-to-intermediate coup-
ling, the SU(N) FHM can host phases other than the SU(N)-
Fermi liquid that we have discussed in this paper. An interest-
ing example of this is the staggered flux phase, where the lat-
tice translation symmetry is spontaneously broken; this phase
naturally arises in the large N limit.

Furthermore, the strong-coupling limit of the FHM is also
of great interest. In particular, at 1/N-filling (whereU≫ t and
there is one particle per site on average). In this case, the sys-
tem is described by the SU(N) Heisenberg model:

H=
2t2

U

∑
⟨i,j⟩

∑
α,β

Sβα (i)S
α
β ( j) , (23)

where the spin operators, Sβα = c†αcβ now obey the SU(N)
algebra. This model can host a zoo of exotic phases in two
dimensions. For instance, at large N, it can host the non-
magnetic lattice-symmetry breaking valence cluster state, and
the chiral spin liquid which supports topological fractional
excitations [154]. Interestingly, this model can support ordered
states at smaller N for other lattice geometries. For instance,
the SU(3) Heisenberg model hosts a three-sublattice state in
a triangular lattice [149, 150] and a dimerized magnetically
ordered state on a honeycomb lattice [158–160]. Finally, we
note that in a recent study, Yamamoto et al have demonstrated
the existence of nematic phases in the SU(3)Heisenbergmodel
on a triangular lattice in the presence of low and high magnetic
fields [164].

In this review, we chose to focus on the experimental
achievements of quantum simulators with AEAs in optical lat-
tice. However, there is an abundant amount of theoretical work
on SU(N) models and we have highlighted only a few import-
ant works in this section. We thus believe that it would be
instructive to provide a short compendium of theoretical and
computational work that has been done for the SU(N) lattice

models. This is done in table 1 where references on computa-
tional and theoretical work are presented. These works illus-
trate the richness of the models and motivate further experi-
mental studies.

4. Future directions

With the development and implementation of quantum gas
microscopy for AEAs [172–174], number-resolved imaging
without parity projection [175], and cooling proposals specific
to SU(N) gases [176, 177], experiments now poise themselves
to measure long range correlations and explore the pleth-
ora of proposed magnetic states (see references in table 1).
Furthermore, a key objective in many-body physics is to
understand the effects of doping Mott insulators and magnet-
ically ordered phases. This has been an active area in the past
few years for SU(2) ultracold FHMs. One example of progress
is the development and testing of geometric string theory [178,
179], which establishes a connection between the strongly cor-
related quantum states at finite doping and the AFM parent
state at half-filling. Even at the current temperatures, exper-
iments are equipped to explore the doped SU(N) FHM and
study the string length and anisotropy across different mag-
netic crossovers at finite temperature. It is worth mentioning
that a first step in this direction for the SU(N) FHM was taken
in [168].

Exploring the spin-imbalanced SU(N) FHM and the SU(N)
FHM under symmetry-breaking fields is an immediate ques-
tion of interest to the field. These questions can be addressed in
a straightforward manner by creating spin-polarized samples
via optical pumping. In this context, we note that He et al
have recently investigated the effect of spin imbalance on the
thermodynamics of SU(N) Fermi gases [180]. Other possible
directions of study correspond to the experimental explora-
tion of Nagaoka ferromagnetism [121, 141], the ionic Hubbard
model [181], and the SU(N) FHM with Raman couplings,
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which is predicted to support chiral currents [182]. In addition
to SU(N) quantum magnetism, other interesting directions
which could be readily implemented with AEAs in OLs, cor-
respond to the study of transport properties, (such as was
done for SU(2) in [183, 184]), engineering hadronic mat-
ter [185], realizing collective spin models [186], and the
quantum simulation of lattice gauge theories [187]. As pre-
viously mentioned, the interest in using AEAs in OLs is not
limited to studying the SU(N) FHM model, but also two-
band models [27, 64, 188] such as the SU(N) Kondo Lattice
Model (KLM) [60, 61, 189, 190]. These two-band models can
be implemented by using the 1S0 ground state and the 3P0

metastable state of AEAs, which exhibit SU(N) symmetric
interactions.

Finally, these systems can be a versatile arena to study far-
from-equilibrium physics. There have already been a few the-
oretical efforts to study the effects of quantum quenches in
these systems [26, 191–194]. These systems can be poten-
tially employed to study generalized thermalization [195],
and hydrodynamics [196] dynamical quantum phase trans-
itions [197], and the physics of non-thermal fixed points [198].
In this context, it is worth noting that although interactions
between fermionic AEAs are inherently repulsive (U> 0), and
are not tunable via magnetic Feshbach resonances as in the
case of alkali atoms, the possibility to study attractive (U< 0)
SU(N) FHMs with N as large as 36 using ultracold molecules
has been recently proposed [199]. This opens up the possibility
of performing interaction quenches in these systems. It would
also be interesting to implement periodic driving in these sys-
tems [200], thereby paving the path towards realizing Floquet
phases of matter with SU(N)-symmetric interactions.
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[100] Imrǐska J, Iazzi M, Wang L, Gull E, Greif D, Uehlinger T,
Jotzu G, Tarruell L, Esslinger T and Troyer M 2014
Thermodynamics and magnetic properties of the
anisotropic 3D Hubbard model Phys. Rev. Lett.
112 115301

[101] Ibarra-García-Padilla E, Mukherjee R, Hulet R G,
Hazzard K R A, Paiva T and Scalettar R T 2020
Thermodynamics and magnetism in the two-dimensional
to three-dimensional crossover of the Hubbard model
Phys. Rev. A 102 033340

[102] Feng C, Ibarra-García-Padilla E, Hazzard K R A,
Scalettar Richard, Zhang S and Vitali E 2023
Metal-insulator transition and quantum magnetism in the
SU(3) Fermi-Hubbard model Phys. Rev. Res. 5 043267

[103] He Y-Y, Qin M, Shi H, Lu Z-Y and Zhang S 2019
Finite-temperature auxiliary-field quantum Monte Carlo:
self-consistent constraint and systematic approach to low
temperatures Phys. Rev. B 99 045108

[104] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanász-Nagy M,
Schmidt R, Grusdt F, Demler E, Greif D and Greiner M
2017 A cold-atom Fermi-Hubbard antiferromagnet Nature
545 462–6

[105] Johansson B 1974 The α-γ transition in cerium is a Mott
transition Phil. Mag. 30 469–82

[106] Allen J W and Martin R M 1982 Kondo volume collapse
and the γ→ α transition in cerium Phys. Rev. Lett.
49 1106–10

[107] Lipp M J, Jenei Z, Cynn H, Kono Y, Park C,
Kenney-Benson C and Evans W J 2017 Anomalous elastic
properties across the γ to α volume collapse in cerium
Nat. Commun. 8 1198

[108] Held K, McMahan A K and Scalettar R T 2001 Cerium
volume collapse: results from the merger of dynamical
mean-field theory and local density approximation Phys.
Rev. Lett. 87 276404

[109] Yi W, Daley A J, Pupillo G and Zoller P 2008
State-dependent, addressable subwavelength lattices with
cold atoms New J. Phys. 10 073015

[110] Honerkamp C and Hofstetter W 2004 Ultracold fermions and
the SU(N) Hubbard Model Phys. Rev. Lett. 92 170403

[111] Wang D, Li Y, Cai Z, Zhou Z, Wang Y and Wu C 2014
Competing orders in the 2D half-Filled SU(2N) Hubbard
model through the pinning-field quantum Monte Carlo
simulations Phys. Rev. Lett. 112 156403

21

https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/PhysRevB.37.3774
https://doi.org/10.1103/RevModPhys.59.845
https://doi.org/10.1103/RevModPhys.59.845
https://doi.org/10.1103/PhysRevLett.81.3527
https://doi.org/10.1103/PhysRevLett.81.3527
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1016/S0370-1573(00)00121-6
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1103/PhysRevA.74.041604
https://doi.org/10.1103/PhysRevA.74.041604
https://doi.org/10.1103/PhysRevLett.93.073002
https://doi.org/10.1103/PhysRevLett.93.073002
https://doi.org/10.1038/nphys2028
https://doi.org/10.1038/nphys2028
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1103/RevModPhys.78.483
https://doi.org/10.1021/cr300215h
https://doi.org/10.1021/cr300215h
https://doi.org/10.1103/RevModPhys.69.683
https://doi.org/10.1103/RevModPhys.69.683
https://doi.org/10.1103/PhysRevB.60.2299
https://doi.org/10.1103/PhysRevB.60.2299
https://doi.org/10.1103/PhysRevA.85.041604
https://doi.org/10.1103/PhysRevA.85.041604
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevLett.132.083401
https://doi.org/10.1103/PhysRevLett.132.083401
https://doi.org/10.1103/PhysRevA.104.043316
https://doi.org/10.1103/PhysRevA.104.043316
https://doi.org/10.1103/PhysRevA.108.053312
https://doi.org/10.1103/PhysRevA.108.053312
https://doi.org/10.1038/nature08814
https://doi.org/10.1038/nature08814
https://doi.org/10.1103/PhysRevLett.106.225301
https://doi.org/10.1103/PhysRevLett.106.225301
https://doi.org/10.1103/PhysRevLett.125.113601
https://doi.org/10.1103/PhysRevLett.125.113601
https://doi.org/10.1038/s41567-022-01726-5
https://doi.org/10.1038/s41567-022-01726-5
https://doi.org/10.1103/PhysRevLett.121.225303
https://doi.org/10.1103/PhysRevLett.121.225303
https://doi.org/10.1126/science.1236362
https://doi.org/10.1126/science.1236362
https://doi.org/10.1038/s41567-022-01725-6
https://doi.org/10.1038/s41567-022-01725-6
https://doi.org/10.1103/PhysRevLett.112.115301
https://doi.org/10.1103/PhysRevLett.112.115301
https://doi.org/10.1103/PhysRevA.102.033340
https://doi.org/10.1103/PhysRevA.102.033340
https://doi.org/10.1103/PhysRevResearch.5.043267
https://doi.org/10.1103/PhysRevResearch.5.043267
https://doi.org/10.1103/PhysRevB.99.045108
https://doi.org/10.1103/PhysRevB.99.045108
https://doi.org/10.1038/nature22362
https://doi.org/10.1038/nature22362
https://doi.org/10.1080/14786439808206574
https://doi.org/10.1080/14786439808206574
https://doi.org/10.1103/PhysRevLett.49.1106
https://doi.org/10.1103/PhysRevLett.49.1106
https://doi.org/10.1038/s41467-017-01411-9
https://doi.org/10.1038/s41467-017-01411-9
https://doi.org/10.1103/PhysRevLett.87.276404
https://doi.org/10.1103/PhysRevLett.87.276404
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1103/PhysRevLett.92.170403
https://doi.org/10.1103/PhysRevLett.92.170403
https://doi.org/10.1103/PhysRevLett.112.156403
https://doi.org/10.1103/PhysRevLett.112.156403


J. Phys.: Condens. Matter 37 (2025) 083003 Topical Review

[112] Wang D, Wang L and Wu C 2019 Slater and Mott insulating
states in the SU(6) Hubbard model Phys. Rev. B
100 115155

[113] Zhou Z, Cai Z, Wu C and Wang Y 2014 Quantum Monte
Carlo simulations of thermodynamic properties of SU(2N)
ultracold fermions in optical lattices Phys. Rev. B
90 235139

[114] Singh R R P and Oitmaa J 2022 Finite-temperature
strong-coupling expansions for the SU(N) Hubbard model
Phys. Rev. A 105 033317

[115] Zhou Z, Wu C and Wang Y 2018 Mott transition in the π-flux
SU(4) Hubbard model on a square lattice Phys. Rev. B
97 195122

[116] Xu H, Wang Y, Zhou Z and Wu C 2024 Mott insulating states
of the anisotropic SU(4) Dirac fermions Phys. Rev. B
109 125136

[117] Golubeva A, Sotnikov A, Cichy A, Kuneš J and Hofstetter W
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